Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-32014892

ABSTRACT

Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. "Immediate" IFN-γ and IL-12p40 production was not detected in MyD88-/- mice. However, unlike IL-12p40-/- and IFN-γ-/- mice, MyD88-/- mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88-/- mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


Subject(s)
Coccidiosis/immunology , Immunologic Factors/metabolism , Interferon-gamma/metabolism , Neospora/immunology , Rodent Diseases/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , Interferon-gamma/deficiency , Interleukin-12/deficiency , Interleukin-12/metabolism , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/metabolism , Neospora/growth & development , Survival Analysis , Time Factors , Toxoplasma/growth & development
2.
Mol Microbiol ; 108(5): 519-535, 2018 06.
Article in English | MEDLINE | ID: mdl-29505111

ABSTRACT

The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro-domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus.


Subject(s)
Mitochondria/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Toxoplasma/physiology , Toxoplasmosis/parasitology , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/genetics , Adenosine Diphosphate Ribose/metabolism , Animals , Female , Fibroblasts/cytology , Fibroblasts/parasitology , Foreskin/cytology , Genetic Loci , Host-Parasite Interactions/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics , Toxoplasma/genetics
3.
Malar J ; 16(1): 473, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29162100

ABSTRACT

BACKGROUND: Since Plasmodium falciparum transmission relies exclusively on sexual-stage parasites, several malaria control strategies aim to disrupt this step of the life cycle. Thus, a better understanding of which individuals constitute the primary gametocyte reservoir within an endemic population, and the temporal dynamics of gametocyte carriage, especially in seasonal transmission settings, will not only support the effective implementation of current transmission control programmes, but also inform the design of more targeted strategies. METHODS: A 1-year prospective cohort study was initiated in June 2013 with the goal of assessing the longitudinal dynamics of P. falciparum gametocyte carriage in a village in Mali with intense seasonal malaria transmission. A cohort of 500 individuals aged 1-65 years was recruited for this study. Gametocyte prevalence was measured monthly using Pfs25-specific RT-PCR, and analysed for the effects of host age and gender, seasonality, and multiclonality of P. falciparum infection over 1 year. RESULTS: Most P. falciparum infections (51-89%) in this population were accompanied by gametocytaemia throughout the 1-year period. Gametocyte prevalence among P. falciparum-positive individuals (proportion of gametocyte positive infections) was associated with age (p = 0.003) but not with seasonality (wet vs. dry) or gender. The proportion of gametocyte positive infections were similarly high in children aged 1-17 years (74-82% on median among 5 age groups), while older individuals had relatively lower proportion, and those aged > 35 years (median of 43%) had significantly lower than those aged 1-17 years (p < 0.05). Plasmodium falciparum-positive individuals with gametocytaemia were found to have significantly higher P. falciparum multiclonality than those without gametocytaemia (p < 0.033 in two different analyses). CONCLUSIONS: Taken together, these results suggest that a substantial proportion of Pf-positive individuals carries gametocytes throughout the year, and that age is a significant determinant of gametocyte prevalence among these P. falciparum-positive individuals. Furthermore, the presence of multiple P. falciparum genotypes in an infection, a common feature of P. falciparum infections in high transmission areas, is associated with gametocyte prevalence.


Subject(s)
Carrier State/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Adolescent , Adult , Age Factors , Carrier State/parasitology , Child , Child, Preschool , Female , Humans , Infant , Malaria, Falciparum/parasitology , Male , Mali/epidemiology , Middle Aged , Prevalence , Prospective Studies , Young Adult
4.
PLoS One ; 12(2): e0170948, 2017.
Article in English | MEDLINE | ID: mdl-28158202

ABSTRACT

The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1-65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Longitudinal Studies , Male , Mali/epidemiology , Middle Aged , Polymerase Chain Reaction , Prevalence , Young Adult
5.
Genetics ; 203(1): 283-98, 2016 05.
Article in English | MEDLINE | ID: mdl-26920761

ABSTRACT

In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous.


Subject(s)
Gene Duplication , Host-Parasite Interactions/genetics , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasmosis/parasitology , Animals , Cats , Gene Dosage , Gene Expression Regulation , Mice , Mice, Knockout , Multigene Family , Transcription, Genetic
6.
PLoS Biol ; 12(4): e1001845, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24781109

ABSTRACT

Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria.


Subject(s)
Mitochondria/parasitology , Protozoan Proteins/immunology , Toxoplasma/immunology , Toxoplasma/pathogenicity , Toxoplasmosis/immunology , Animals , Animals, Genetically Modified , Cytokines/metabolism , Female , Immunity, Innate , Mice , Mice, Inbred C57BL , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/classification , Toxoplasmosis/parasitology , Toxoplasmosis/pathology , Vacuoles/parasitology
7.
mBio ; 5(1): e01003-13, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24496792

ABSTRACT

UNLABELLED: Toxoplasma gondii is a human obligate intracellular parasite that has infected over 20% of the world population and has a vast intermediate host range compared to those of its nearest relatives Neospora caninum and Hammondia hammondi. While these 3 species have highly syntenic genomes (80 to 99%), in this study we examined and compared species-specific structural variations, specifically at loci that have undergone local (i.e., tandem) duplication and expansion. To do so, we used genomic sequence coverage analysis to identify and curate T. gondii and N. caninum loci that have undergone duplication and expansion (expanded loci [ELs]). The 53 T. gondii ELs are significantly enriched for genes with predicted signal sequences and single-exon genes and genes that are developmentally regulated at the transcriptional level. We validated 24 T. gondii ELs using comparative genomic hybridization; these data suggested significant copy number variation at these loci. High-molecular-weight Southern blotting for 3 T. gondii ELs revealed that copy number varies across T. gondii lineages and also between members of the same clonal lineage. Using similar methods, we identified 64 N. caninum ELs which were significantly enriched genes belonging to the SAG-related surface (SRS) antigen family. Moreover, there is significantly less overlap (30%) between the expanded gene sets in T. gondii and N. caninum than would be predicted by overall genomic synteny (81%). Consistent with this finding, only 59% of queried T. gondii ELs are similarly duplicated/expanded in H. hammondi despite over 99% genomic synteny between these species. IMPORTANCE: Gene duplication, expansion, and diversification are a basis for phenotypic differences both within and between species. This study represents the first characterization of both the extent and degree of overlap in gene duplication and locus expansion across multiple apicomplexan parasite species. The most important finding of this study is that the locus duplications/expansions are quantitatively and qualitatively distinct, despite the high degree of genetic relatedness between the species. Given that these differential expansions are prominent species-specific genetic differences, they may also contribute to some of the more striking phenotypic differences between these species. More broadly, this work is important in providing further support for the idea that postspeciation selection events may have a dramatic impact on locus structure and copy number that overshadows selection on single-copy genes.


Subject(s)
Gene Duplication , Genetic Loci , Genetic Variation , Sarcocystidae/genetics , Comparative Genomic Hybridization , Computational Biology , DNA, Protozoan/genetics , Synteny
8.
Proc Natl Acad Sci U S A ; 110(18): 7446-51, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23589877

ABSTRACT

Toxoplasma gondii is a ubiquitous protozoan parasite capable of infecting all warm-blooded animals, including humans. Its closest extant relative, Hammondia hammondi, has never been found to infect humans and, in contrast to T. gondii, is highly attenuated in mice. To better understand the genetic bases for these phenotypic differences, we sequenced the genome of a H. hammondi isolate (HhCatGer041) and found the genomic synteny between H. hammondi and T. gondii to be >95%. We used this genome to determine the H. hammondi primary sequence of two major T. gondii mouse virulence genes, TgROP5 and TgROP18. When we expressed these genes in T. gondii, we found that H. hammondi orthologs of TgROP5 and TgROP18 were functional. Similar to T. gondii, the HhROP5 locus is expanded, and two distinct HhROP5 paralogs increased the virulence of a T. gondii TgROP5 knockout strain. We also identified a 107 base pair promoter region, absent only in type III TgROP18, which is necessary for TgROP18 expression. This result indicates that the ROP18 promoter was active in the most recent common ancestor of these two species and that it was subsequently inactivated in progenitors of the type III lineage. Overall, these data suggest that the virulence differences between these species are not solely due to the functionality of these key virulence factors. This study provides evidence that other mechanisms, such as differences in gene expression or the lack of currently uncharacterized virulence factors, may underlie the phenotypic differences between these species.


Subject(s)
Genes, Protozoan/genetics , Sarcocystidae/genetics , Sarcocystidae/pathogenicity , Sequence Homology, Nucleic Acid , Toxoplasma/genetics , Alleles , Animals , Base Pairing/genetics , Base Sequence , Conserved Sequence , Gene Expression Regulation , Genetic Loci/genetics , Humans , Mice , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Sarcocystidae/growth & development , Synteny/genetics , Toxoplasma/growth & development , Toxoplasma/pathogenicity , Toxoplasmosis, Animal/parasitology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...